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Abstract

We develop data-driven algorithms to fully automate sensor fault detection in systems gov-
erned by underlying physics. The proposed machine learning method uses a time series of
typical behavior to approximate the evolution of measurements of interest by a linear time-
invariant system. Given additional data from related sensors, a Kalman observer is used to
maintain a separate real-time estimate of the measurement of interest. Sustained deviation
between the measurements and the estimate is used to detect anomalous behavior. A deci-
sion tree, informed by integrating other sensor measurement values, is used to determine the
amount of deviation required to identify a sensor fault. We validate the method by applying
it to three test systems exhibiting various types of sensor faults: commercial flight test data,
an unsteady aerodynamics model with dynamic stall, and a model for longitudinal flight dy-
namics forced by atmospheric turbulence. In the latter two cases we test fault detection for
several prototypical failure modes. The combination of a learned dynamical model with the
automated decision tree accurately detects sensor faults in each case.
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1 Introduction

Sensor fault detection is an important problem in many fields of engineering, where monitor-
ing and state estimation are required for a system’s successful operation. Although catastrophic
failures may be obvious, more insidious fault modes, such as decalibration, slow drift, and low-
frequency oscillations, are more difficult to detect. Thus, there is a reliance in practice on en-
gineering expertise and heuristics for anomaly identification. In the context of aircraft dynamics,
redundant measurements are typically taken for critical quantities; a degree of robustness to faults
is therefore achieved via a voting or weighted averaging sensor fusion scheme [1]. This is not al-
ways the case in flight test scenarios, where such large quantities of data are collected that it is
impractical to either automatically detect faults via redundancy or to manually monitor them.
Fast, automatic anomaly detection can lead to reduced flight test time, resulting in significant cost
savings for aircraft programs. Moreover, in routine operations, current designs require redundant
sensing and flight controllers that are robust to faulty measurements. Robust and guaranteed
fault detection may lead to designs with improved performance and reduced environmental im-
pact [24].

Automated model-based fault detection has been well-studied for linear systems [40, 63, 69],
but the general problem remains open for nonlinear dynamics [58]. When a nonlinear model
is available, one approach to detect anomalous sensor behavior is to estimate the state with an
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extended Kalman filter [36, 66], and to then detect consistent discrepancies between the model
and estimates by comparing observed deviations to an expected range of process noise [22, 34, 64].
This approach has been applied to flight dynamics models for identification [25] and automatic
isolation [21] of anomalous sensors.

If a physics-based model is unavailable, data-driven methods offer an attractive alternative to
detect faults, for example by training neural networks [42, 43, 48]. Although in recent years neural
networks have had impressive successes in fields such as image and speech recognition [8], their
behavior tends to be unreliable outside of training conditions: the precise regime that is arguably
most important for investigating anomalous behavior. Indeed, deep learning models are well
known to consistently fail in generalization and extrapolation tasks since they are interpolatory in
nature [39]. An alternative is data-driven system identification [11, 12, 14, 15, 26, 28, 29, 53, 54, 62].
These methods can identify a dynamical model that is suitable for filter-based state estimation and
fault detection [57, 58].

In this paper we build on previous work in data-driven model identification and anomaly
detection, in particular [21] and [58], by combining optimal estimation and system identification
with modern machine learning methods. We verify that the proposed approach is applicable to
both strongly nonlinear dynamics and correlated, non-Gaussian process noise, and demonstrate
fault detection on data from flight tests. A core component of the algorithm is a simple Kalman
observer which is used to predict future sensor values based on current measurements. When
the difference between this prediction and the observed values passes a threshold over a period of
time, a sensor fault is flagged. The Kalman filter requires a model of the underlying dynamics from
which to estimate future states. This model is learned from data via the dynamic mode decomposition
(DMD) [32, 53] with time-delays [13]. A decision tree [51] is then used to determine the right
threshold for the gap between prediction and observation. The model is fully automatic; one need
only specify a set of labeled training data and it will learn both a model for the dynamics present
in the data and a set of rules for detecting sensor failures.

The key advantages of this approach are that it is fully data-driven, so that a model is not
required for the dynamics underlying the system being monitored, only measurements. It is also
automated and can readily support a large number of measurements/features. Its primary dis-
advantage is that it is a supervised method, meaning that one must supply labeled data to train
the model. The techniques from which the model is built are all fairly general, granting it a large
amount of flexibility while simultaneously restricting its accuracy for some specific applications.
In domains in which underlying physical dynamics are well-understood, it may be advantageous
to use a more specialized method.

The paper proceeds as follows. In Section 2 we give an overview of the mathematical back-
ground underlying our approach before describing the proposed method itself in Section 3. Sec-
tion 4 discusses three example flight applications: one real-world flight test dataset and two sim-
ulated examples. We conclude with Section 5 which provides some final thoughts.

2 Background

In this section we provide a mathematical foundation for the proposed method. Sections 2.1 and
2.2 describe Kalman filters and their application to anomaly detection. A method for constructing
a linear time invariant (LTI) model for use in a Kalman filter is discussed in Sections 2.3 and
2.4. Section 2.5 details a method of enriching the LTI model by introducing time-delays. Finally,
Section 2.6 gives a brief discussion of decision trees, the last component of our method.
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2.1 System identification and Kalman filtering

Since their development in the 1960’s [31], various forms of Kalman filters have proven useful in
fields ranging from robotics to weather prediction. The filter described in this section is a simple
form of this powerful tool, but is nonetheless effective in many test problems. The method is
essentially a simplification of those proposed in [21, 22, 25, 58], and references therein. It is thus
potentially extensible to more complex detection and estimation problems, including those with
underlying physical systems exhibiting strongly nonlinear dynamics.

Although application of Kalman filters to fault detection has been proposed since the 1970’s,
until recently an existing model was necessary for the method. Considering the scale of sensing in
flight test applications, developing independent predictive models for the various sensors could
be prohibitive. However, a recent development suggested in [58] was to identify a linear time-
invariant (LTI) model that estimates the relationship between measurements using the DMD algo-
rithm. DMD is a powerful method originally developed in the fluids community to study spatio-
temporal coherence in high-dimensional numerical and experimental fluid flow data [50, 53, 62].
It has since found applications ranging from neuroscience to epidemiology [32]. The method is
designed to efficiently extract dominant patterns from very large data sets and automatically uses
correlations in the data for improved robustness.

A simple linear model identified with this algorithm may not be accurate enough to account
for the complex interactions in the aircraft system. However, although Kalman filters are often
used in full-state estimation, if the goal is not estimation but fault detection, the dynamic model
does not need to be particularly accurate in order to capture anomalous behavior, as our results
demonstrate. The first step of the procedure is therefore to identify a linear predictive model from
a time series of typical measurements. Online, this DMD model is used to maintain a Kalman
filtered estimate of the measurement of interest. The variance between the estimate and the actual
measurement is monitored, and persistent deviations signal anomalous behavior.

2.2 Anomaly detection with Kalman filters

The following gives a simplified description of what will be used in our approach outlined in Sec-
tion 3. More sophisticated methods can be found in [21, 22, 25, 58]. Let the vector of measurements
we wish to monitor at discrete time step k be denoted by xk ∈ Rn. If we have access to a set of
related (but not necessarily redundant) measurements, denote these by yk ∈ Rp. For the sensor
fault detection examples, x, a scalar, is the sensor measurement, and y is a vector of other relevant
measurements (e.g. readings from other sensors). Assume we have an LTI model (identified either
by dynamic mode decomposition or some other procedure) that predicts the next measurement
xk+1, given current information xk and yk:

xk+1 = Axk + Byk.

In other words, we treat the related measurements as exogenous inputs in the model. There does
not need to be a direct causal relationship in the sense that actuation is usually taken in control
theory; these measurements should just help to predict the next measurement of interest. Again,
this model may be fairly inaccurate. The use of exogenous inputs is designed to stabilize the
model and help to detect drift, high frequency noise, etc. This model may alternately be viewed
as a linear regression predicting the next measurement. The simplest Kalman filter is a separate
LTI “observer” system that maintains an estimate x̂ of the measurement of interest:

x̂k+1 = Ax̂k + Byk + K(xk − x̂k). (1)
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Figure 1: Anomaly detection for the flight test dataset of Section 4.1 with the Kalman filter. Top:
measurements from two redundant sensors. Just before 2500 seconds, sensor 2 breaks and begins
giving erratic readings. Bottom: a moving average, Vk, of the covariance term (see 2). Note that
Vk remains negligible until the sensor failure event leads to persistent anomalous measurements
relative to the Kalman filter.

The new term in this equation is the innovation (x − x̂) which acts as feedback to stabilize the
estimate. In general the Kalman gain K is a matrix, which can be chosen for optimal convergence
of the estimate to the true state (by solving a Ricatti equation), given knowledge of the sensor and
process noise covariances. In the example of Fig. 1 (and for the numerical examples of Section
4), K is a scalar affecting the time sensitivity of the estimated state. We found that the method is
relatively insensitive to the choice of Kalman gain, and values from 0.1 to 0.001 were tested with
similar performance.

As suggested in [25, 40], a moving average of the innovation covariance can be used to identify
anomalous behavior:

Vk =
1

N

k∑
i=k−N

(xi − x̂i)(xi − x̂i)
>. (2)

Intuitively, this term will remain large when a measurement persistently yields anomalous be-
havior, provided the LTI model captures the important correlations between sensors. Even if the
model is not particularly accurate, exogenous inputs can still produce an estimate that reflects
anomalous behavior. It is worth emphasizing, however, that without significant additional vali-
dation there is no reason to believe that the Kalman filtered estimate is accurate.

For example, Fig. 1 demonstrates the Kalman filter-based detection of a sensor failure in the
real world data set (see Section 4.1). An anomaly can be flagged when the innovation covariance
exceeds some threshold, which may itself be selected in an automated fashion. Although the
filtered estimate is often inconsistent with both the faulty sensor and a redundant, working sensor,
before and after the faulty sensor fails, the innovation covariance only grows significantly after the
failure. In other words, the filtered estimate does not need to be accurate in order to be an accurate
predictor of sensor faults.

4



2.3 Identifying a linear time-invariant model

The method described above requires a reasonably accurate model of the dynamics of the mea-
surement of interest, possibly including the relationship between this measurement and the out-
put of related sensors. In the simplest case (presented here) this could be a linear time-invariant
(LTI) system, although application to a nonlinear model is possible using an Extended Kalman
Filter (EKF) [21, 22, 25] or optimization-based nonlinear Kalman smoothing approaches [5, 6].

Although obtaining a model in general can be a labor-intensive and problem-specific task,
recent developments in system identification have enabled a range of straightforward, efficient
model estimation tools. The method presented here uses one such system identification algorithm:
DMD. DMD was originally developed in the fluid dynamics community as a method to extract
coherent spatio-temporal structures from complex, high-dimensional data [50, 53, 62]. As such, it
is designed to take advantage of correlations in the data and reduce the underlying dimensionality
of the model. Although there have been many theoretical and numerical refinements of DMD
proposed (see e.g. [7, 13, 27, 44, 47, 67, 68]), we present a simple formulation of the method in the
paragraphs that follow.

Suppose we have a series of measurements {x1,x2, . . . ,xm+1} and we assume that these are
related by approximately linear dynamics, i.e.

xk+1 ≈ Axk.

If we arrange the measurements in a time-shifted pair of matrices X and X′ so that

X =

x1 x2 · · · xm

 , X′ =

x2 x3 · · · xm+1

 ,
these matrices are related by

X′ ≈ AX.

Denoting the pseudoinverse of X by X†, the least-squares estimate of A is given by

A ≈ X′X†. (3)

The spectral properties of the system are then estimated as usual by the eigendecomposition of A.
For the case of high-dimensional systems, significant computational gains can be realized by

reducing the dimensionality of the problem. The rank of A is limited by the minimum dimension
of X and X′. Instead of studying the spectral properties of the full-state system, we can project the
high-dimensional state onto the leading principal components of X and approximate the spectrum
of A by the spectrum of the matrix that steps this low-dimensional approximation forward in time.
That is, if the singular value decomposition of X is given by

X = ΨΣV∗,

then the projection of an arbitrary snapshot xk onto the leading r principal components is

αk = Ψ∗rxk,

where Ψr consists of the first r columns of Ψ. The spectrum of A can be approximated by the
spectrum of Ã, where

αk+1 ≈ Ãαk.
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After some manipulation, we find that a least-squares estimate for Ã is given by

Ã = Ψ∗rX
′VrΣ

−1
r Ψr. (4)

For this anomaly detection application, the system dimensionality n will typically be much
lower than the number of available time steps m, so the computation of A by equation (3) is
tractable. However, we still use a dimensionality reduction approach, partly to take advantage
of correlations in the time series and partly to make the method scalable to larger problems. To
estimate the full system matrix A would require only a slight modification to equation (4):

A = X′VrΣ
−1
r Ψr.

Thus DMD provides an automated means of constructing an LTI model evolving the measure-
ments of interest x in time, but we would also like this model to take into account readings from
other sensors. Put another way, DMD finds the matrix A of equation (1) and must be extended to
produce B.

2.4 Dynamic Mode Decomposition with Control (DMDc)

The full LTI system (A,B) can be estimated via a slight modification to the DMD procedure de-
veloped by Proctor, et al. called DMD with control (DMDc) [47]. We split the full state vector into
measurements of interest, x, and exogenous “inputs” y. These inputs are treated as actuation in
the Kalman filter model, but are more accurately taken to be simply exogenous predictors of the
sensor measurements. As with the state vectors, the input vectors can be compiled into a sin-
gle matrix Υ. The estimation then proceeds similarly (as explained in detail in [47]). First data
matrices are constructed

X =

x1 x2 · · · xm

 , X′ =

x2 x3 · · · xm+1

 , Υ =

y1 y2 · · · ym

 .
The dynamics with control may be written in terms of these data matrices as

X′ ≈ AX + BΥ.

Finally, the system matrices may be obtained by regression

[
A B

]
= X′

[
X
Υ

]†
.

With the singular value decomposition[
X
Υ

]
=

[
Ψ1

Ψ2

]
ΣV ∗,

the matrices Ψ1 and Ψ2 now give the principal components of the state and input subspaces,
respectively. Dimensionality reduction based on the singular values Σ is also possible at this
stage.

The system (A,B) is finally estimated by

A = X′V Σ−1Ψ∗1

B = X′V Σ−1Ψ∗2.

6



2.5 Time delays: HAVOK and Delay-DMD

For complex dynamics, a standard linear system may not have enough descriptive ability to serve
as a model for the Kalman filter fault detection method. One approach is to enrich the library
with nonlinear functions of the state, leading to Extended DMD (EDMD) or Koopman Mode De-
composition (KMD) [67]. EDMD/KMD has been demonstrated to yield models that are predictive
enough for accurate full-state estimation with Kalman filters [57], and for sensor fault detection in
a power grid model [58]. In the latter work, anomalies were detected using hypothesis testing for
the distribution of normalized innovation squared in the Kalman filter under the assumption of
Gaussian white noise for process disturbances. However, accurate EDMD/KMD models rely on
a judicious choice of observable functions [10, 44], which can be challenging in practice; the data
matrices quickly become ill-conditioned as the number of observables is increased.

For systems that cannot be accurately represented with standard DMD, we instead augment
the library with time-delayed measurements. The use of time-delays has a long history in sys-
tem identification, including the widely used Eigensystem Realization Algorithm and Observer
Kalman Identification [28, 29] methods, and deep connections to dynamical systems theory [13,
61]. Augmenting the state vector with time-delays allows the model to capture some of the effects
of latent variables. For example, consider a simple harmonic oscillator in periodic sinusoidal mo-
tion. A first-order one-dimensional linear model is only capable of expressing exponential growth
and decay, not oscillatory dynamics. However, if the state is augmented by a time delay of 1/4
period, a linear model can effectively capture the second-order dynamics (or the latent, imagi-
nary component of motion). Applying DMD to a time-delay-augmented vector can therefore give
highly accurate representations of quasiperiodic dynamics [17].

The modeling and estimation procedure is effectively the same, except that a scalar measure-
ment xk at time tk is replaced by a vector xk =

[
xk xk−d xk−2d · · · xk−ndd

]>, where d is the
length of each delay and nd is the number of delays. For anomaly detection applications, only the
innovation corresponding to the current time step is tracked.

2.6 Decision trees

Decision trees are a popular machine learning method for both classification and regression prob-
lems [49, 51]. In this work we are interested in classification. Given a vector of real-valued features
(e.g. sensor measurements or the innovation covariance), a decision tree uses a set of threshold-
based rules to determine whether a failure has occurred. In this work the only features passed
to the decision tree are raw sensor values and the average innovation covariance. However, it is
common practice to engineer other features tailored to the specific problem domain. The rules are
learned during a training phase in which labeled examples (the labels tell the tree which examples
correspond to sensor failures) are shown to the tree. Once trained the rules are, in essence, a series
of if-else statements with conditional expressions checking whether features are above or below
different threshold values. We use the Scikit-learn decision tree implementation [46], trained with
the CART algorithm [9].

Decision trees are a natural choice in this context because they automate and generalize the
threshold-selection process. Rather than choosing, through trial and error, a cutoff in the inno-
vation covariance above which a sensor failure is deemed to have occurred, a decision tree auto-
mates the choice. This approach also allows the model to take into account other sensor-to-sensor
interactions not captured by the Kalman filter. In particular, the decision tree is able to set dif-
ferent innovation covariance thresholds for different regimes in the dynamics (e.g. perhaps one
threshold is appropriate for low angle-of-attack maneuvers and another is better suited to high
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angle-of-attack flight patterns). This is especially important for the dataset of Section 4.1.
Decision trees have additional benefits relevant to our use-case: their decision mechanism

is interpretable, they scale extremely well to large datasets and are fast to evaluate in an online
setting, and they are able to identify which features are most useful. Without regularization they
tend to overfit training data, so we limit the depth of the trees used in our experiments.

3 The proposed method

The following gives a high-level overview of the algorithmic method used for sensor failure de-
tection. We break the process into an offline phase where the model is calibrated using training
data, and an online phase where the model is deployed to detect sensor fault events in real time.

1. Offline phase: Given a training setDtrain consisting of sensor measurements at various time
points and corresponding labels,

(a) Compute the DMDc system (A,B) as in Section 2.4 using time-delayed measurements
described in Section 2.5;

(b) Derive any desired features from Dtrain to be used with the decision tree. This includes
the average innovation covariance (2), which can be computed using A and B;

(c) Train the decision tree using the derived and raw features.

2. Online phase: Given a series of measurements x1,x2, . . .

(a) Compute any features expected by the decision tree, using the previously constructed
A and B to compute the average innovation covariance;

(b) Pass the features into the decision tree to obtain a class prediction (either that the sensor
has failed or continues to function properly).

The Kalman filter-based anomaly detection method described in this section can be applied
to all available sensors simultaneously. The innovation covariance then becomes a matrix whose
diagonal entries can be monitored to identify faults in the corresponding sensors. Note that in this
work we restrict our attention to models for a single scalar state x. As such the decision tree is
trained to output a binary result for a single sensor, although extension to parallel detection for
multiple sensors is straightforward.

4 Three example applications

4.1 Real-world dataset

We first consider the problem of detecting sensor failure using anonymized (scaled to lie in [−1, 1])
measurements from aircraft sensors collected during flight tests. We focus on detecting faults in a
given sensor that has a high failure rate (sensor 2) using the data from 25 other on-board sensors.
Several sensors capture similar or redundant information which the DMD model can exploit. In
total there are 21 flights, each roughly seven hours in length, with measurements recorded at a
frequency of 20 Hz. Sensor 2 fails in 14 of the test flights. There is one time series in which the
sensor failure was detected, sensor 2 was fixed, and then broke again. This case was split into
two separate time series. When sensor 2 fails there is typically a small constant shift in the data
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Figure 2: A plot of data from a subset of the sensors for test flight 1. Measurements from the
faulty sensor (Sensor 2) are shown in red. The sensor fails just before second 2500, where there is
a short drop followed by erratic, noisy measurements. We plotted maximally important features
as returned by a decision tree trained on raw sensor data to predict failure events.

followed by increased noise for the duration of the flight. Such a failure is shown along with
anonymized data from some of the more relevant sensors in Fig. 2.

In this real data setting (data are from actual flights), the time of sensor failure time must be
inferred from looking at the data. We have hand-labeled estimated time of failure in each case;
reported time to detection is based on these estimates. Systematic error in the absolute detection
time is therefore possible, but comparisons between flight tests should be reliable.

In order to train the decision tree the flights are divided into a training and testing set (no
separate validation step is necessary as all parameters are determined with cross-validation using
the training data). The training set consists of data from six test flights, flights 0 through 5, four of
which contain a sensor failure.

The DMD model is calibrated using flight 3, which contains no failure events. Notably, the
model learns to predict future values of Sensor 2 by averaging together the current measurement
from Sensor 2 with those of three other sensors with redundant signals (Sensors 0, 1, and 10). Each
is given roughly equal weight. This is reminiscent of a weighted-mean method for consolidating
redundant measurements into one fault tolerant estimate [1]. From Fig. 1 it is easy to see that
something like the difference between sensors 2 and 10 would be a good proxy for when sensor 2
is behaving properly, but we stress that the model figures this out automatically.

A decision tree is then trained to predict sensor faults with its hyperparameters being selected
using five-fold cross validation. Examples are reweighted before being fed to the tree in order to
mitigate the effects of class imbalance. The top ten signals are given in Table 1 along with their
Gini (feature) importances with respect to the decision tree.

As seen in Table 1 most of the importance is concentrated in just two of the features, with the
majority of the weight going to the moving average of the innovation covariance. The second-
ranked feature, Sensor 25, turns out to be an almost binary signal indicating when measurements
should be collected from the sensor of interest.

The results of the detection of sensor failures on the flights in the test data set is summarized
in Table 2. We show performance metrics for each individual flight so that poor results can be
more easily investigated. As there are so many data points for each flight, standard metrics such
as precision (the proportion of flagged examples that were actually true positives) and recall (the
proportion of true positives we were able to detect) are not particularly helpful here1. Instead we

1True positives and true negatives are positive (failed sensor) and negative (working sensor) examples correctly clas-
sified by the model. False positives are negative examples the model classified as belonging to the positive class, i.e.
instances where the sensors are working properly, but the model erroneously predicts a sensor has failed. Similarly,
false negatives are positive examples the model thought were negative examples.
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Feature Importance
Vk 0.7514

Sensor 25 0.1985
Sensor 4 0.0261
Sensor 5 0.0095
Sensor 9 0.0057
Sensor 14 0.0056
Sensor 17 0.0012
Sensor 22 0.0008
Sensor 13 0.0005
Sensor 7 0.0002

Table 1: Feature importance for the decision tree trained using the flight test dataset.

Flight Total examples False positives False negatives Accuracy Lag Time (s)
6 175,162 708 0 0.995958 N/A
7 213,964 0 22 0.999897 1.1
8 143,140 0 4,663 0.967424 10.1
9 121,413 0 412 0.996607 1.35
10 368,140 0 0 1.000000 N/A
11 152,146 0 130 0.999146 6.5
12 278,465 50 0 0.999820 N/A
13 372,950 3 0 0.999992 N/A
14 124,570 2,617 0 0.978992 N/A
15 166,880 0 0 1.000000 0
16 302,550 0 11,690 0.961362 ∞
17 295,680 0 63 0.999787 2.9
18 64,700 0 9 0.999861 0.45
19 472,090 59,809 157 0.872978 7.85
20 117,650 0 229 0.998054 11.45

Table 2: Prediction results for commercial test flights.

focus on the number of false positives and false negatives along with lag time (time from actual
sensor failure to detection). Overall accuracy is also included to give more context to the number
of false positives and negatives reported.

Assuming an end goal of using our model to alert a human of potential sensor failure during
a flight test within a few seconds of occurence, the model performance is promising, with the
exception of two flights: 16 and 19. There is some fluctuation in lag time, most likely due to
circumstances that affect flight dynamics. The false negatives are almost entirely due to lag time.
The false positives tend to persist briefly (about two seconds) before automatically correcting.
For example for flight 8 we observe four different short periods when the model thinks a sensor
failure has occurred. These correspond to abrupt changes in flight conditions as the pilot(s) carry
out different test maneuvers.

Now we turn our attention to the two flights with poor model performance. In flight 16 there
are a large number of false negatives (and a lag time of ∞) as the model completely misses an
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Figure 3: The sensor faults applied to the simulated datasets. In particular, the faults used for the
dataset of Section 4.2.1 are shown here. Those used for the dataset of Section 4.2.2 are the same up
to rescaling.

actual sensor failure. This is because sensor 25, which is normally active during the tests, was
completely inactive throughout the entirety of this flight. If one wished to learn to predict regard-
less of whether or not this sensor was in use, one may need to resort to training a separate model
using only data where the sensor was inactive, because it is used in all the other flights.

In flight 19 we see a large number of false positives. This is caused by persistent discrepancies
between sensor 2 and its redundant sibling, sensor 10. We suspect that sensor 10 temporarily mal-
functioned. Whether or not it is desirable for the algorithm to flag these anomalous measurements
depends on the application. After the abnormal behavior of sensor 10 the model detects the failure
of sensor 2 almost perfectly.

The final model is able to reliably detect true sensor failure events within 12 seconds (with most
occurring in under five). There are infrequent false positives detected with a brief persistence of
about two seconds. In some cases the measurements taken by the faulty sensor drift close to the
values of the reliable redundant sensors, leading to false negatives.

4.2 Synthetic datasets

In order to better understand the capabilities of our proposed approach we apply it to two sensor
failure tasks derived from simulated datasets. In both instances we use a dynamical model to
generate realistic sensor data, which we then augment in various ways to mimic common sensor
failure modes. Specifically, we simulate the faults shown in Fig. 3, similar to those studied by Eyk-
eren and Chu [21]: catastrophic failure (multiplicative), slow oscillation (additive), increased noise
(additive), and slow drift (additive). In every case we add a small amount of white noise (mean 0,
standard deviation 5× 10−3) to the underlying sensor measurement of interest after incorporating
the fault.
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4.2.1 Goman-Khrabrov model

A long-standing challenge in aerodynamic modeling was capturing the effect of a separated flow
on aerodynamic moments. This arises for example in high angle-of-attack maneuvers, when an
airfoil wake can detach, leading to much more complex physical behavior such as dynamic stall
[33]. The aerodynamic moments in this case depend not only on the airfoil configuration, as in
standard linearized approaches based on stability and control derivatives, but also on the state of
the separated flow. Because of their importance in a range of unsteady fluid dynamic contexts,
dynamic stall, and separated flows more generally, have been widely studied [2, 3, 18–20, 38, 45,
55, 59, 60].

Goman and Khrabrov proposed a mathematical model of dynamic stall that treats the flow
state as a dynamic internal system variable [23]. For the case of a high angle-of-attack airfoil this
is a scalar variable x ∈ (0, 1) representing the separation point normalized by the chord length, so
that fully attached flow corresponds to x = 1. The internal flow field dynamics are modeled with
a simple time-delay model:

τ2ẋ+ x = x0 (α− τ1α̇) .

The function x0(α) defines the empirical steady separation point as a function of angle of attack α.
Quasisteady effects are expressed through the time-delay shift τ1α̇. The overall model dynamics
are a relaxation towards the quasisteady separation point on a timescale τ2. The moments are then
algebraic functions of the aerodynamic state, for example CL = CL(α, x). For a high angle-of-
attack airfoil, the model

CL(α, x) =
π

2
sin
[
α(1 +

√
x)2
]

was shown to accurately describe experimental data for a NACA 0015 airfoil [23].
For our synthetic data, we use a simple model for the steady separation point:

x0(α) =
1− tanh [20(α− 0.25)]

2
.

This produces the expected hysteretic behavior, although it is not expected to accurately represent
the steady separation point of any particular airfoil. The time constants τ1 and τ2 in the model can
be obtained in general by fitting to experimental data. We use the reported values τ1 = 0.5 and
τ2 = 4.5, nondimensionalized by chord length and free stream velocity [23].

The separation point and lift coefficient for a sinusoidal pitching motion at nondimensional
frequency ω = 0.05 is shown in figure 4, along with the steady values as a function of angle of
attack. The effect of the model is to capture observed hysteresis in the curves; the flow remains
attached to higher angle-of-attack on pitch-up motions and stall is delayed. Conversely, when the
flow is separated during a pitch-down maneuver it remains so for longer, resulting in reduced lift
relative to the steady value.

Our experimental dataset consists of measurements ofCL, α, and α̇ taken five times per second
for 2000 seconds. The DMDc model is trained using the full time-series. We then simulate failure
of a hypothetical CL sensor at t = 1000 using each of the fault modes shown in Fig. 3, which
results in the time series given in Fig. 5a. We then precompute the innovation covariance, Vk,
for each sensor failure type, with the Kalman filter (1) constructed using DMDc. The scale of Vk
differs between the modes so only training on one type of sensor failure may lead to poor results
when trying to detect different failure types. We plot the moving average of the covariance for the
different failure modes in Fig. 5b. Note the differences in scale between the modes. A threshold
for Vk, above which a sensor failure is deemed to have occurred, which is chosen based on only
one type of fault, may be inappropriate for the others.
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Figure 4: Hysteresis in flow separation (top) and lift coefficient (bottom) in the Goman-Khrabrov
model for an airfoil undergoing sinusoidal pitching motion at nondimensional frequency ω =
0.05. Stall is delayed relative to the steady value for pitch-up motions with attached flow (upper
curves on both plots).

Finally, we train a decision tree to predict when a sensor failure has occurred. The tree is given
access to α, α̇, the corrupted CL measurements, and Vk as features. At each time point the model
must attempt to predict whether the given CL measurement has been corrupted or not (whether
the sensor has failed). We use five-fold cross-validation to select model parameters. We construct
two types of training and testing data; the first involves incorporating random examples from all
four failure types into the training set and the second sources its training data from just one sensor
fault and attempts to predict when the others have occurred. In each case the training set contains
30,000 examples and the testing set contains 10,000 examples.

Model performance is summarized in Table 3. “Train accuracy” refers to the accuracy of the
model on a holdout set during cross-validation. For models 1-4 this number gives an estimate of
the models’ accuracies on the fault type on which they were trained. The best accuracy and preci-
sion scores are both achieved by the model with training data from all four fault types. However,
model 4 has the best recall, meaning that it misses the fewest sensor failure events. This is likely
due to the fact that model 4 must choose a very small threshold for Vk at which to separate neg-
ative and positive class instances. All five models list the average innovation covariance as their
top feature.

The proposed method reliably detects sensor faults for data generated from the Goman-Khrabrov
model, even on unseen fault types. However, if either the amplitude or frequency of the forcing
term changes after the DMD model has already been trained, the DMD model becomes too in-
accurate to be useful and overall predictive performance suffers considerably. This is a general
drawback of data-driven models: when training and testing sets are different enough in distribu-
tion, models learned on one set have a hard time generalizing to the other.
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Figure 5: (a) Visualizations of the different lift coefficient (CL) sensor failure modes for the Goman-
Khrabrov model. (b) Moving average of the innovation covariance for each sensor fault type using
data generated with the Goman-Khrabrov model. Sensor failure occurs at t = 1000. Note that we
omit from this plot measurements taken with t < 750.
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Model Fault types seen Accuracy Precision Recall Train accuracy Tree depth
1 Catastrophic failure 0.9732 0.9980 0.9483 0.9343 5
2 Slow oscillation 0.9672 0.9629 0.9718 0.9351 2
3 Increased noise 0.9730 0.9993 0.9467 0.9482 2
4 Slow drift 0.9784 0.9707 0.9867 0.8678 3
5 All 0.9818 0.9996 0.9642 0.9823 5

Table 3: Performance metrics for models trained on different subsets of sensor fault types with
data generated with the Golman-Khrabrov model. The best values for each column are bolded.

4.2.2 Flight dynamics model

Motivated by anomaly detection in a flight test setting, we also consider a longitudinal flight
dynamics model for a business jet in atmospheric turbulence [56]. The equations of motion for
the longitudinal model capture motions in the forward and vertical directions, including pitch for
a total of three degrees of freedom. Flight controls are included for elevator, thrust, flaps, and
stabilator; these are trimmed for steady, level flight. The aerodynamic model includes a realistic
geometric configuration, stability and control derivatives, US standard atmospheric conditions
interpolation, and a Mach number correction. The dynamics are forced by atmospheric turbulence
generated to approximate the von Kàrmàn spectrum by filtering band-limited white noise [41, 65].

From this system we can measure not only the dynamic variables for inertial velocity and
pitch, but also lift, drag, pitching moment, true airspeed, angle of attack, and Mach number. We
consider measurements of the true airspeed (TAS), informed also by angle of attack, inertial air-
speed, pitch, lift, and thrust. Note that the flight controls are constant, but the model includes an
altitude correction for effective thrust. We generate samples for each variable over t ∈ [0, 600] at a
rate of 10 samples per second. Next we build a Kalman filter from a DMDc model trained on the
TAS data. Various faults are then introduced starting at t = 300 in the TAS sensor to obtain the
time series shown in Fig. 6a. These measurements are much noisier than those from the previous
section due to the turbulence-based forcing.

Again we precompute the innovation covariance, Vk, for each fault type. The results are shown
in Fig. 6b. It is evident from this plot that all faults, except the catastrophic failure, will be difficult
to detect. None of the other covariance time series admit a single threshold that distinguishes bad
readings from good ones. As before we study the behavior of decision trees trained on data from
all four failure modes or from just one mode. The trees are given measurements of TAS, angle of
attack, inertial air speed, pitch, lift, thrust, and Vk. Training and testing sets are of equal size, with
each training set constituting 75% of the data. Since the dataset is more complex we allow our
cross-validation procedure to select trees of depth up to seven.

Table 4 details the results of these experiments. Model 5 outperforms all the others by a consid-
erable margin, though it is also the most complicated model. Since the decision tree sees examples
of each failure type, it is able to construct a more complex set of thresholding rules for different sit-
uations. In contrast, the other models consist of trees which appear to overfit to the failure modes
they are shown, as evidenced by their diminished accuracy scores relative to model 5. Notably,
model 1 adopts a classification rule allowing it to predict catastrophic sensor failures with perfect
accuracy (its in-group accuracy is 1), however for all other failure types it is no better than a coin
toss. The threshold it selects for Vk is much too large for the other fault types and so it almost
always predicts that no sensor failure has occurred. In this case model 2 has the highest recall,
but also a low precision, for the same reason as model 4 did previously: its threshold for Vk is set
lower than the others, reducing the number of false negatives at the cost of more false positives.
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Figure 6: Flight dynamics model data. (a) Visualizations of the different true airspeed (TAS) sensor
failure modes. (b) Moving average of the innovation covariance for each sensor fault type. Sensor
failure occurs at t = 300. Note that we omit from (a) measurements taken with t < 250. We retain
them in (b) to show the behavior of the innovation covariance for normal sensor readings.
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Model Fault types seen Accuracy Precision Recall Train accuracy Tree depth
1 Catastrophic failure 0.5002 0 0 1.0 2
2 Slow oscillation 0.9549 0.9230 0.9926 0.8412 3
3 Increased noise 0.8974 0.9915 0.8016 0.8878 2
4 Slow drift 0.9572 0.9659 0.9478 0.8190 4
5 All 0.9867 0.9961 0.9767 0.9859 7

Table 4: Performance metrics for models trained on different subsets of sensor fault types for the
flight dynamics model. The best values for each column are shown in bold.

The average innovation covariance has the highest feature importance for each of the five models.

The proposed method is effective at identifying sensor faults in simulated flight test data,
but there is a noticeable degradation in performance relative to data simulated with the Goman-
Khrabrov model. This is due in part to the complexity of the simulated dynamics as well as the
erratic atmospheric forcing. We observe that for this more challenging dataset, it is increasingly
important that the model be trained using examples from multiple sensor failure modes, allowing
it to establish different decision thresholds for different types of dynamics.

If data for some failure types is unobtainable, then the model should be trained using fault
types that are most difficult to detect. Failure modes that can be detected trivially, such as catas-
trophic sensor failure, may prove insufficient to train a robust detector.

5 Conclusion

We have developed a fully automatic approach to detect sensor failures in systems with multi-
ple types of sensor failures. The method first uses the dynamic mode decomposition for control
with time-delay measurements to learn a simple linear time-invariant model for the evolution of
a sensor of interest in time. This model is embedded in a Kalman observer which is then used to
predict future measurements. A potential sensor fault is detected when the predicted and mea-
sured sensor values disagree by a large margin, with the margin size selected using a decision tree.
All components are trained automatically. The performance of the proposed method was demon-
strated on three test datasets: real measurements from a series of flight tests and two simulated
datasets from the Goman-Khrabrov and a realistic flight dynamics model. In each case the differ-
ence between the true and Kalman-observer-predicted values of the sensor of interest provided
an accurate proxy for when sensor failure had occurred.

There are numerous extensions that could be explored for improving upon the results obtained
here. Any of the components of the algorithm could be replaced with more sophisticated variants.
For example, advances in Koopman theory could be leveraged to enrich the linear time invariant
physics model. A nonlinear model such as an extended Kalman filter or a more general estima-
tor [4] or a model learned via some other model discovery framework [15, 30, 54] could be used in
place of the Kalman filter. Such generalizations would allow for the application of the proposed
method to systems exhibiting strongly nonlinear dynamics. It would also be interesting to incor-
porate this analysis within the context of robust statistics [16], which has recently been shown
to improve flow measurements [52]. The performance of the decision tree could be enhanced by
employing an ensemble [35], a cost-sensitive training algorithm [37], or by better utilizing class
probabilities output by the tree.
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[39] Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203, 2016.

[40] R. K. Mehra and J. Peschon. An innovations approach to fault detection and diagnosis in dynamic
systems. Automatica, 7(637-640), 1971.

[41] MIL-HDBK-1797. Flying qualities of piloted aircraft. Dept. of Defense, 1990.

[42] M. R. Napolitano. Online learning neural architectures and cross-correlation analysis for actuator
failure detection and identification. International Journal of Control, 63(3):433–455, 1996.

[43] M. R. Napolitano, C. Chen, and S. Naylo. Aircraft failure detection and identification using neural
networks. Journal of Guidance, Control, and Dynamics, 16(6):999–1009, 1993.

[44] J Nathan Kutz, Joshua L Proctor, and Steven L Brunton. Applied koopman theory for partial differen-

19



tial equations and data-driven modeling of spatio-temporal systems. Complexity, 2018, 2018.

[45] M. V. OL, A. Altman, J. D. Eldredge, D. J. Garmann, and Y. Lian. Résumé of the AIAA FDTC low
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